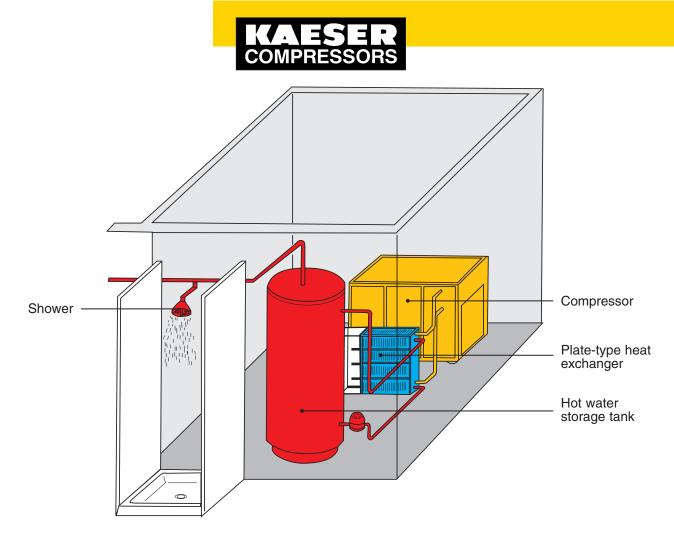


PTG, SWT Series

Space Heating System

Because of the enclosed, compact construction of screw compressors, it is no problem to recover 94% of their overall energy consumption from the cooling air with a ducting system and guide it to where it is needed.


Using this method, the compressor room and adjacent facilities, such as warehouses, workshops, etc. can be heated, either fully or partly. In summer, when no heating is required, the exhaust heat can be directed to the open air by swivelling a shutter in the ducting.

The movement of the shutter and thus the flow of hot air into the adjacent facilities can be precisely determined by thermostatic control, allowing a constant temperature to be maintained in these spaces.

Applications

- Auxiliary or main heating for warehouses, workshops, etc.
- Drying aid for paint spraying, or washing
- Air curtains
- Improving efficiency of oil burners by heating the combustion air
- Keeping large spaces at moderate temperatures

Rotary screw compressor	Rated motor power	Maximum thermal	available power	Useable hot air volume	Cooling air heating	Savings over 200 Heating oil	
Model	Model kW kW		MJ/h	m³/h	K(approx.)	I	€
SX 3 SX 4 SX 6 SM 8 SM 11 SK 19 SK 26 ASD 32 ASD 37 ASD 47 ASD 57 BSD 62 BSD 72 CSD 82 CSD 102 CSD 122 CSD 122 CSD 122 CSD 141 DSD 241 DSD 241 DSD 241 DSD 241 DSD 281 ESD 301 ESD 351 ESD 361 ESD 361 ESD 361 ESD 440 GS 580/590 GS 640/650 HS 760	2.2 3 4 5.5 7.5 11 15 18.5 22 30 30 30 37 45 55 75 90 75 90 75 90 75 90 132 160 132 160 250 250 355 400 250 250 355 400 250 250 355 400 200 250 250 355 400 200 250 355 400 200 200 200 200 200 200 200	2.5 3.5 4.6 6.2 8.4 12.4 16.8 21.5 31.1 35.9 35.5 43.2 53 64 79 98 118 142 171 137 227 210 244 269 30 34 38 225 42	9 13 17 22 30 45 60 77 91 112 129 128 156 191 230 284 338 295 353 425 511 616 493 878 968 917 756 878 968 107 121 135 877 875 878 968 107 121 135 875 878 968 155 155 155 155 155 155 155 15	1100 1500 1500 2500 2500 3800 3800 5700 5700 8000 8000 9000 13000 13000 13000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 21000 28000 27000 34000 10000 12000	7 9 12 15 20 17 20 21 20 21 20 24 22 24 22 24 22 24 22 24 22 24 22 24 22 24 21 20 24 21 20 24 21 20 20 21 20 20 21 20 20 20 20 20 20 20 20 20 20 20 20 20	724 1014 1333 1796 2434 3593 4868 6229 7359 9011 10402 10286 12517 15356 18543 22889 27235 30712 23759 28394 34189 41143 49545 30694 54181 65771 60845 70696 77940 8605 9706 8605 9706	181 254 333 449 608 898 1217 1557 1840 2253 2600 2571 3129 3839 4636 5722 6809 7678 5940 7099 8547 10286 12387 12386 12387 12386 12387 12427 124777 124777 1247777777777
Heat value of heating oil: 35.5 MJ/I = 9.861 kWh/I 1 kW =1 MJ/h x 3.6 Heating efficiency: 0.7 Price of heating oil: € 0.25 / I Calculation for an ASD 32: (usable heat energy: 21.5 kW Cost savings = 21.5 kW x 2000 h x € 0.25 / I = € 1557							

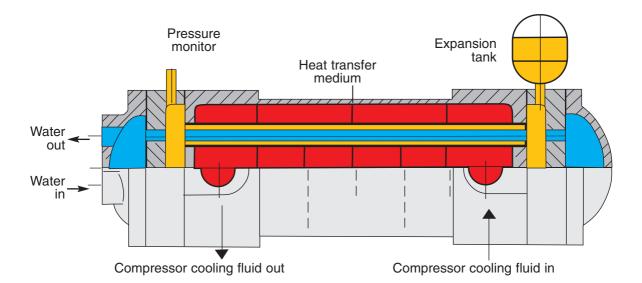
PTG Water Heating System

The PTG heat exchanger consists of a stack of up to 200 individually stamped stainless steel plates, brazed in a vacuum furnace using 99.9 percent pure copper. The plate profile generates a highly turbulent flow within the channels to ensure efficient heat transfer. Every alternate plate is fitted at 180 degrees to the next, providing innumerable contact points right across the heat exchanging surface.

Because of the high temperatures possible (around 80 $^{\circ}\text{C}$) the system is enclosed in a frame to prevent injury through contact.

The plate-type heat exchanger can produce hot water at about. 70 $^\circ\text{C}.$

If less, or even no hot water is needed, the compressor cooling fluid flow is automatically directed through the standard fluid cooler. Cooling of the compressor is constantly assured whether hot water is required or not.


The system can be easily integrated in any hot water supply plant, especially where it is desirable to avoid mixing water and cooling fluid.

Applications

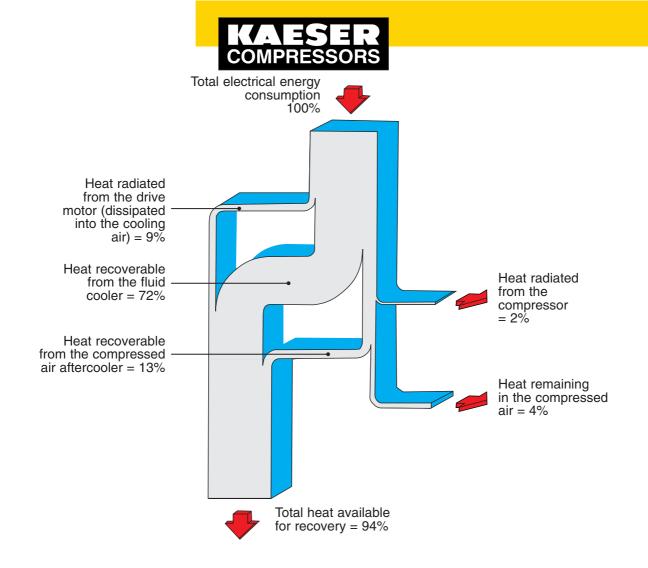
- laundries, showers, bathrooms and washrooms
- canteens and large kitchens
- food industry
- chemical and pharmaceutical industries
- industrial cleaning processes
- plating processes

	Rotary screw compressor	Rated motor	Maximum available thermal power		Hot water volume Heating to Heating to		Installa- tion Savings potential over 2000 hours		
	compressor	power	unenna	power	70 °C	70 °C	uon	Heating	Heating
					(ΔT 25 °C)	(∆T 55 °C)		oil	costs
	Model	kW	kW	MJ/h	m³/h	m³/h	int./ ext.		€
	ASD 32	18.5	16.4	59	0.55	0.25	intern	4752	1188
	ASD 37	22	19.3	69	0.67	0.31	intern	5592	1398
	ASD 47	25	23.9	86	0.83	0.38	intern	6925	1731
	ASD 57	30	27.6	99	1.03	0.43	intern	7997	1999
	BSD 62	30	27.0	97	0.92	0.42	intern	7823	1956
	BSD 72	37	33.3	120	1.14	0.52	intern	9648	2412
	CSD 82	45	40.8	147	1.39	0.63	intern	11821	2955
	CSD 102	55	49.4	178	1.70	0.77	intern	14313	3578
	CSD 122	75	62	223	2.00	0.91	intern	17964	4491
	CSDX 137	75	73	263	2.56	1.15	intern	21151	5288
	CSDX 162	90	84	302	2.93	1.32	intern	24338	6085
	DSD 141	75	65	234	2.20	1.00	intern	18833	4708
	DSD 171	90	78	281	2.60	1.20	intern	22600	5650
	DSD 201	110	93	335	3.20	1.46	intern	26946	6736
	DSD 241	132	114	410	4.30	1.78	intern	33030	8258
	DSD 281	160	138	497	4.46	2.02	int.ext.	39984	9996
	ESD 251	132	110	396	3.81	1.73	extern	31871	7968
	ESD 301	160	146	526	4.69	2.22	extern	42302	10575
	ESD 351	200	180	648	5.77	2.62	extern	52153	13038
	ESD 361	200	169	608	5.83	2.65	extern	48966	12241
	ESD 441	250	197	709	6.70	3.05	extern	57078	14270
	FS 440	250	209	752	7.20	3.27	extern	60555	15139
	GS 580/590	315	263	947	9.08	4.12	extern	76201	19050
	GS 640/650	355	296	1066	10.23	4.65	extern	85763	21441
	HS 690	400	334	1202	11.52	5.23	extern	96773	24193
	HS 760	450	376	1354	12.97	5.89	extern	108942	27235
1	Heat value of heating oil: 35.5 MJ/l = 9.861 kWh/l 1 kW =1 MJ/h x 3.6								
	Heating efficiency: Price of heating oil	0.7 • €().25 / I	C	alculation for	an ASD 32: (i	isable heat	eneray: 16.4	kW
	Cost savings = $16.4 \text{ kW} \times 2000 \text{ h}$ $y \in 0.25 / 1 = 0.1188$								
	0.7 x 9.861 kWh/l								

SWT Water Heating System

In the SWT fail-safe heat exchanger one tube is fitted into another such that a space still exists between the two tubes. Both tubes are individually pressed into separate tube end plates. The space is filled with a harmless heat transfer medium kept at a constant pressure by the expansion tank. This pressure is continuously monitored by a pressure switch.

In case of breakage or corrosion. either water or compressor cooling fluid mixes with the heat transfer medium and the pressure increases, actuating the pressure switch, giving an alarm or shutting down the compressor. The fail-safe heat exchanger is piped exactly the same as the plate-type heat exchanger and can produce hot water at about. 70 °C.


If less, or even no hot water is needed, the cooling fluid flow is automatically directed through the standard cooler of the compressor. Cooling of the compressor is constantly assured whether hot water is required or not.

The SWT system is particularly suitable forproviding hot water of drinking quality where it is essential that there is no danger of the water being contaminated by cooling fluid.

Applications

- Food industry
- Hot drinking water
- Chemical and pharmaceutical industries
- Canteens and large kitchens

Rotary screw compressor	Rated motor	Maximum available thermal power		Hot wat Heating to	er volume Heating to	Installa- tion Savings potential over 2000 hours		
	power			70 °C	70 °C		Heating	Heating
				(ΔT 25 °C)	(ΔT 55 °C)		oil	costs
Model	kW	kW	MJ/h	m³/h	m³/h	extern	1	€
ASD 32	18.5	16.4	59	0.55	0.25	extern	4752	1188
ASD 37	22	19.3	69	0.67	0.31	extern	5592	1398
ASD 47	25	23.9	86	0.83	0.38	extern	6925	1731
ASD 57	30	27.6	99	1.03	0.43	extern	7997	1999
BSD 62	30	27.0	97	0.92	0.42	extern	7823	1956
BSD 72	37	33.3	120	1.14	0.52	extern	9648	2412
CSD 82	45	40.8	147	1.39	0.63	extern	11821	2955
CSD 102	55	49.4	178	1.70	0.77	extern	14313	3578
CSD 122	75	62	223	2.00	0.91	extern	17964	4491
CSDX 137	75	73	263	2.56	1.15	extern	21151	5288
CSDX 162	90	84	302	2.93	1.32	extern	24338	6085
DSD 141	75	65	234	2.20	1.00	extern	18833	4708
DSD 171	90	78	281	2.60	1.20	extern	22600	5650
DSD 201	110	93	335	3.20	1.46	extern	26946	6736
DSD 241	132	114	410	4.30	1.78	extern	33030	8258
DSD 281	160	138	497	4.46	2.02	extern	39984	9996
ESD 251	132	110	396	3.81	1.73	extern	31871	7968
ESD 301	160	146	526	4.69	2.22	extern	42302	10575
ESD 351	200	180	648	5.77	2.62	extern	52153	13038
ESD 361	200	169	608	5.83	2.65	extern	48966	12241
ESD 441	250	197	709	6.70	3.05	extern	57078	14270
FS 440	250	209	752	7.20	3.27	extern	60555	15139
GS 580/590	315	263	947	9.08	4.12	extern	76201	19050
GS 640/650	355	296	1066	10.23	4.65	extern	85763	21441
HS 690	400	334	1202	11.52	5.23	extern	96773	24193
HS 760	450	376	1354	12.97	5.89	extern	108942	27235
Heat value of heating oil: 35.5 MJ/l = 9.861 kWh/l 1 kW =1 MJ/h x 3.6								
Heating efficiency: 0.7 Price of heating oil: € 0.25 / I Calculation for an ASD 32: (usable heat energy: 16.4 kW								
		0 / 1		ost savings =	16.4 kŴ	x 2000 h	x € 0.25 / I =	
0.7 x 9.861 kWh/l								

Heat Flow Diagram

Almost all the electrical energy consumed by a compressor is changed into heat. On screw compressors, approximately 94% of this heat is given up to the cooling system, approximately 4% remains in the compressed air and approximately 2% is radiated from the compressor into the immediate surroundings.

Because the low cost of electricity used to be only a small part of operating costs, this wastage was of no great concern and few considered making practical use of the heat produced by compression. Only since the dramatic increase in electricity costs has the recovery of heat from a compressor become an important factor in the planning of an efficient air supply system.

The basic principle lies in the transfer of the heat into a medium and then transporting it to where the heat can be utilised.

The theoretical available heat of a screw compressor is 94% of the overall electrical energy consumption. It consists of heat dissipated in the fluid cooler (72%), the aftercooler (13%) and heat radiated from the drive motor (9%).

An enclosed, air-cooled screw compressor with a precisely defined cooling air outlet would transfer the total amount into the cooling air for **space heating**.

If water is to be heated, the oil in the fluid cooler is chosen as the transfer medium so that only 72% of the overall power consumption is available for water heating.

If a **combination of hot water and space heating** is chosen then a maximum of 72% is available for water heating and at least 22% for space heating.

Worldwide sales and service network -KAESER is always nearby

Argentina Australia Austria Bahrain Bangladesh Belarus Belgium Brazil Bulgaria Canada Chile China Columbia Croatia Cyprus Czech Republic Denmark Egypt Eire Estonia Finland France

Germany Greece Hungary Iceland India Indonesia Italy Japan Kenya Korea Latvia Lithuania Luxembourg Malaysia Mexico Morocco Netherlands Norway Pakistan Philippines Poland Portugal Qatar Romania Russia Saudi Arabia Singapore Slovakia Slovenia South Africa Spain Sri Lanka Sweden

KAESER MOBILAIR portable compressor works

KAESER headquarte

Switzerland Taiwan Thailand Tunisia Turkey UAE Ukraine United Kingdom USA Vietnam

Kompresory a chlazení s.r.o.

Žirovnická 3133/6 106 00 Praha 10 Tel: +420 602 947 660 E-mail: prodej@kompresory-chlazeni.cz

www.kompresory-chlazeni.cz